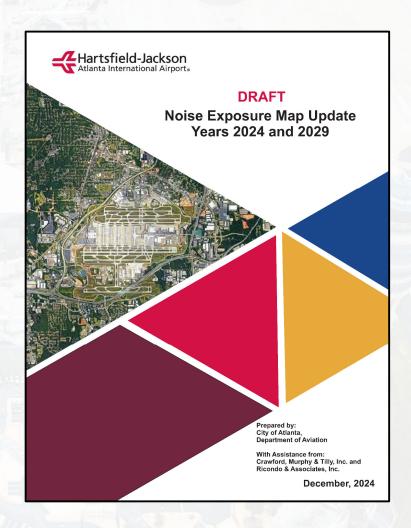
Updating ATL's Noise Exposure Maps (NEMs)

Thomas E. Nissalke, Ph.D.

December 5, 2024


JAN LENNON
INTERIM AIRPORT GENERAL
MANAGER

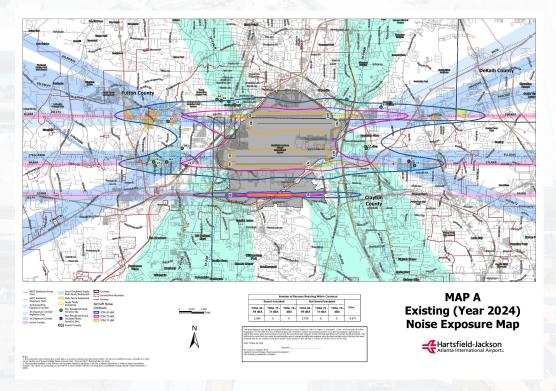
Purpose of Presentation

- The City of Atlanta owns Hartsfield-Jackson Atlanta International Airport (ATL) and the City's Department of Aviation (DOA) operates the airport.
- The DOA implements an aircraft noise mitigation program and uses federal funds to fund the program.
- To receive and use federal funds, the DOA must follow a process prescribed in Code of Federal Regulations Title 14, Part 150 that guides an airport sponsor in the preparation of Noise Exposure Maps (NEMs).
- The NEMs provide the basis for the geographic boundaries of the noise insulation program.
- In accordance with 14 CFR Part 150, the DOA is updating ATL's NEMs to reflect existing, year 2024 operations and forecast year 2029 operations.
- Subpart B, Section 150.21(b) of Part 150 requires that the public be afforded the opportunity to review and comment during the development of the NEMs.
- Scoping sessions were held earlier this year for which users of the airport, political jurisdictions, regulatory/planning agencies, and the public were invited. Comments received from the sessions were considered in the development of the Draft NEMs being presented tonight.

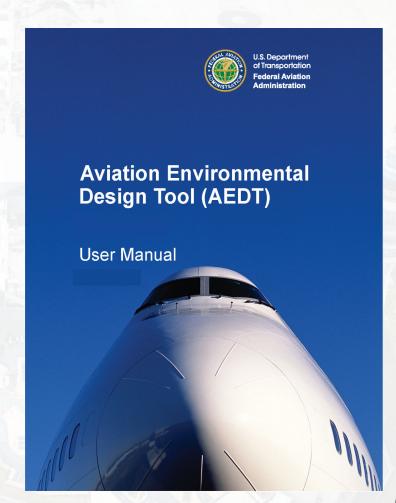
Draft NEM Update Report

- In addition to presenting the Draft NEMs, the DOA is also announcing the availability of the Draft NEM Update Report.
- A notice of the availability of the Draft NEM Update Report was published in the Atlanta Journal-Constitution.
- A digital copy of the NEMs and the Draft NEM Update Report are available for download on the DOA's website for ATL (ATL.com) and at ATL-NEM.com.
- A hardcopy of the NEMs and the Draft NEM Update Report are available for review at the DOA's Technical Support Campus (1255 South Loop Road).

ATL Facts and Figures


- Since 1998, Hartsfield-Jackson Atlanta International Airport (ATL) has been the busiest airport in the world for 24 out of 25 years.
- ATL has five parallel runways (two primarily used for arrivals, two primarily used for departures, and one used for both arrivals and departures).
- ATL serves more than 150 destinations within the U.S. and more than 70 international destinations in 43 countries.

	Annual Number of			
Year	Passengers	Operations		
2019	110,531,300	904,301		
2020	42,918,685	548,016		
2021	75,704,760	707,661		
2022	93,699,630	724,145		
2023	104,663,451	775,818		


What's an NEM?

- A scaled, geographic depiction of a land use map overlaid with aircraft noise contours of yearly average day-night sound levels (YDNL 65, 70, and 75 decibels).
- NEMs identify land uses within the contours that are noncompatible with the above levels of aircraft noise (e.g., residences, schools).

How are NEMs Developed?

- NEMs are developed using a computer programthe Aviation Environmental Design Tool (AEDT).
- The AEDT was designed by the Federal Aviation Administration to model aviation-related operations to computer noise, emissions, and fuel consumption.
- AEDT Version 3f will be used in the preparation of the noise contours that are placed on the land use map.

Roles/Responsibilities

There are multiple entities involved in the process of updating NEMs:

· DOA:

- Responsible for preparing NEMs in consultation with those that use ATL, political jurisdictions, and planning agencies with property within ATL's NEMs, and the public. Meetings were held earlier this year with users of the airport and the political jurisdictions/planning agencies with authority over the properties within ATL's NEMs.

Federal Aviation Administration:

 Establish regulations that provide a uniform system of evaluating aircraft noise exposure. Regulate the maximum noise level that civilian aircraft can emit through noise certification standards. Review and accept NEMs.

Land Use Planning Officials:

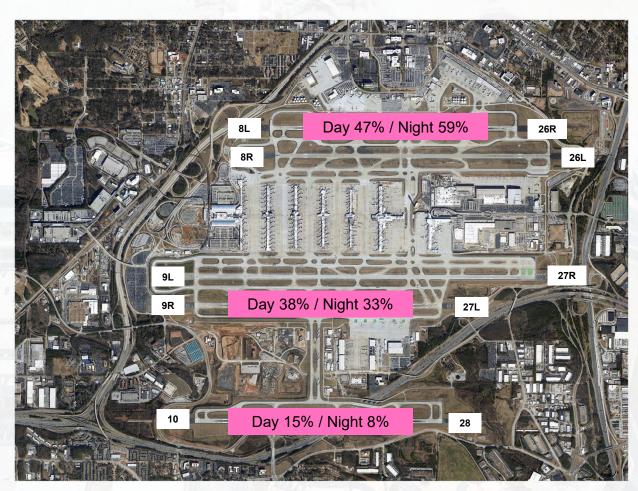
- Responsible for considering the effects of aviation activity on local land use.

Review of Draft AEDT Input

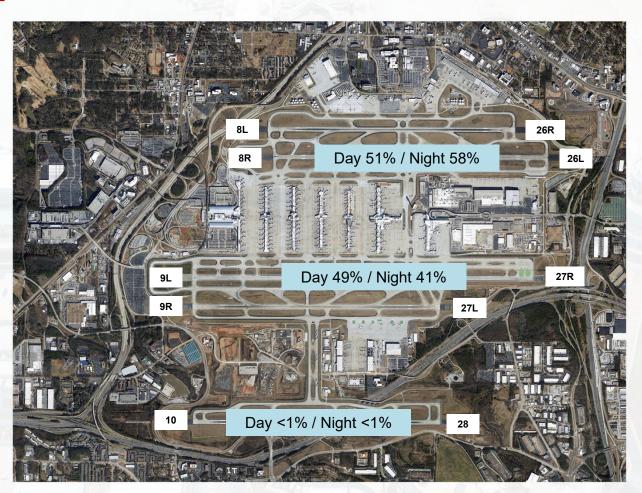
- Year 2024 and 2029 aircraft fleet mix data and number of average day operations
- Arrival and departure runway use
- Airfield directional use
- East and west flow flight tracks and corridors
- Arrival and departure profiles
- Time of day airfield use
- ATL average annual temperature
- Airfield elevation

Aircraft Fleet Data (Average Day) - 2024

				Number of
Category		Airframe	Engine	Operations
Air Carrier Passenger		Airbus A220-300	PW1521G	7
		Airbus A319-100 Series	CFM56-5A5	63
		Airbus A320-200 Series	CFM56-5A3	120
		Airbus A320-NEO	LEAP-1A26/26E1	72
		Airbus A321-200 Series	CFM56-5B3/3	275
		Airbus A321-NEO	PW1133GA-JM	29
		Airbus A330-200 Series	PW4168A	5
		Airbus A330-300 Series	PW4168A	19
		Airbus A330-900N Series (Neo)	TRENT 7000-72	2
		Airbus A350-900 series	TRENT XWB-84	27
		Boeing 717-200 Series	BR700-715C1-30	260
		Boeing 737-700 Series	CFM56-7B24	116
		Boeing 737-8	LEAP-1B27	52
		Boeing 737-800 Series	CFM56-7B26/3	136
		Boeing 737-9	LEAP-1B27	3
		Boeing 737-900 Series	CFM56-7B24E	342
		Boeing 757-200 Series	PW2037	275
		Boeing 757-300 Series	PW2040	16
		Boeing 767-300 Series	PW4060	22
		Boeing 767-400	CF6-80C2B7E	13
		Boeing 777-200 Series	TRENT 892B	4
		Boeing 777-300 ER	GE90-115BL2	2
		Bombardier CRJ-700	CF34-8C1	43
		Bombardier CRJ-900	CF34-8C5	167
		Embraer ERJ170	CF34-8E5A1	4
		Embraer ERJ175	CF34-8E	5
		Embraer ERJ175-LR	CF34-8E	8
		Embraer ERJ190	CF34-10E6	10
	Cargo	Airbus A300F4-600 Series	PW4158-3	4
		Boeing 747-400 Series Freighter	CF6-80C2B1F	3
		Boeing 747-8F	GENX-2B67	5
		Boeing 757-200 Series	PW2037	2
		Boeing 767-300 Series	PW4060	21
		Boeing 777-200-LR	GE90-110B1L	8
Air Taxi, C	General	Cessna 208 Caravan	PT6A-114	15
Aviation, Military		Cessna 560 Citation V	JT15D-5, -5A, -5B	5
		Cessna 680-A Citation Latitude	PW306C	8
		Embraer ERJ170	CF34-8E5A1	0
		Embraer Phenom 300 (EMB-505)	PW530	15
		Raytheon Beech 1900-C PT6A-65B		17
Total				


Aircraft Fleet Data (Average Day) - 2029

				Number of
Cate	on.	Airframe	Engine	Operations
Air Carrier	1	Airbus A220-100	PW1524G	111
All Gamer	1 doscinger	Airbus A220-100	PW1521G	106
		Airbus A319-100 Series	CFM56-5A5	91
		Airbus A320-200 Series	CFM56-5A3	7
		Airbus A320-NEO	LEAP-1A26/26E1	47
		Airbus A321-200 Series	CFM56-5B3/3	383
		Airbus A321-200 Series	PW1133GA-JM	231
		Airbus A330-200 Series	PW4168A	12
		Airbus A330-300 Series	PW4168A	10
		Airbus A330-900N Series (Neo)	TRENT 7000-72	7
		Airbus A350-900N Series	TRENT XWB-84	40
		Boeing 737-700 Series	CFM56-7B24	118
		Boeing 737-700 Series	LEAP-1B27	55
				_
		Boeing 737-800 Series	CFM56-7B26/3	155
		Boeing 737-9	LEAP-1B27 CFM56-7B24E	403
		Boeing 737-900 Series	GENX-2B67	2
		Boeing 747-8F	PW2037	238
		Boeing 757-200 Series	PW2037	
		Boeing 757-300 Series	PW4060	26
		Boeing 767-300 Series Boeing 767-400	CF6-80C2B7E	7
		Boeing 777-200 Series	TRENT 892B	7
			GE90-115BL2	2
		Boeing 777-300 ER		2
		Boeing 787-9 Dreamliner Bombardier CRJ-700	GENX-1B70 CF34-8C1	34
		Bombardier CRJ-900	CF34-8C5	132
		Embraer ERJ170	CF34-8C5 CF34-8E5A1	6
		Embraer ERJ175	CF34-8E	15
	Cordo	Airbus A300F4-600 Series	PW4158-3	
	Cargo			5
		Boeing 747-400 Series Freighter	CF6-80C2B1F	3 5
		Boeing 747-8F	GENX-2B67	
		Boeing 757-200 Series	PW2037	3
		Boeing 767-300 Series	PW4060	23
A: T		Boeing 777-200-LR	GE90-110B1L	8
Air T	axı	Cessna 208 Caravan	PT6A-114	12
		Embraer ERJ170	CF34-8E5A1	11
		Raytheon Beech 1900-C	PT6A-65B	
Gene	eral	Cessna 560 Citation V	JT15D-5, -5A, -5B	4
Aviation/	Military	Cessna 680-A Citation Latitude	PW306C	12
T-4-1		Embraer Phenom 300 (EMB-505) PW530		
Total				2,406

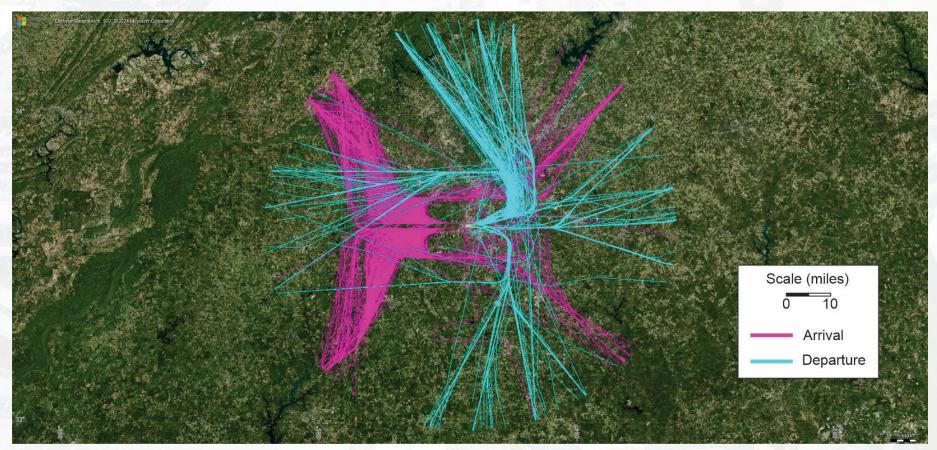

Runway Use – Arrivals

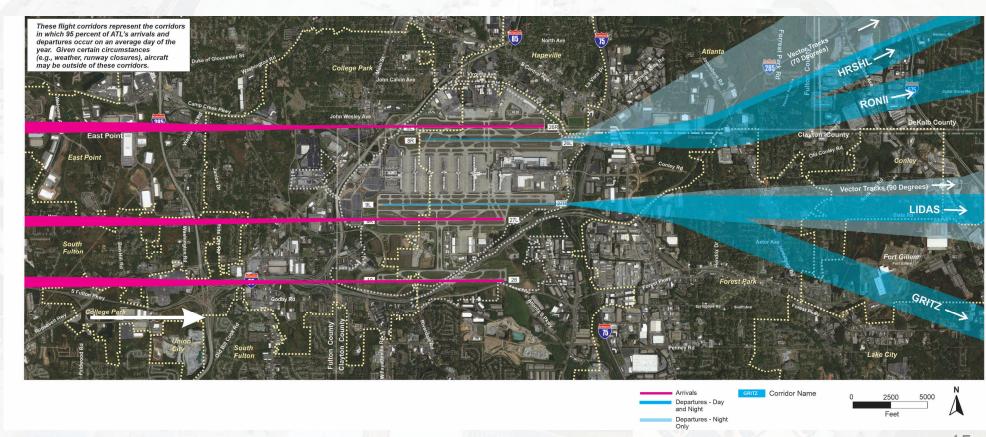
DRAFT

Runway Use – Departures

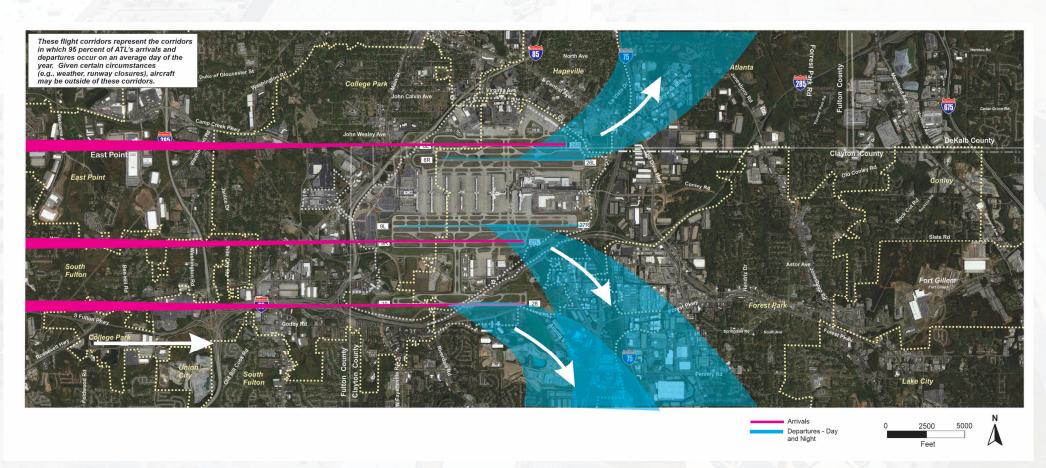
Airfield Directional Use

DRAFT

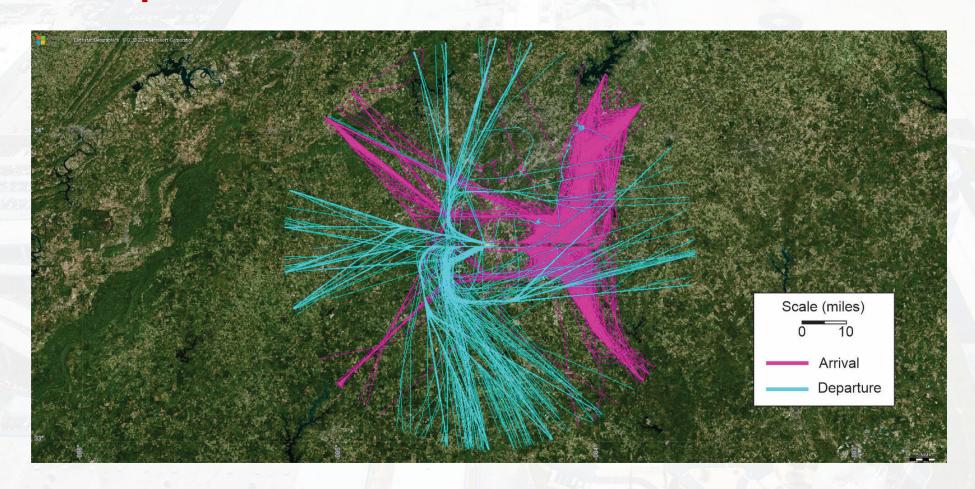



Developed using data from the DOA's Flight Tracking System.

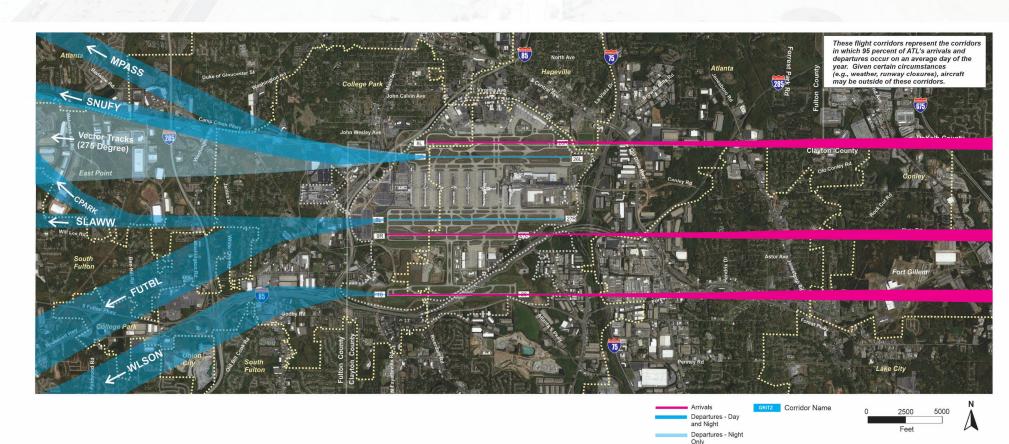
Arrival/Departure Tracks- East Flow



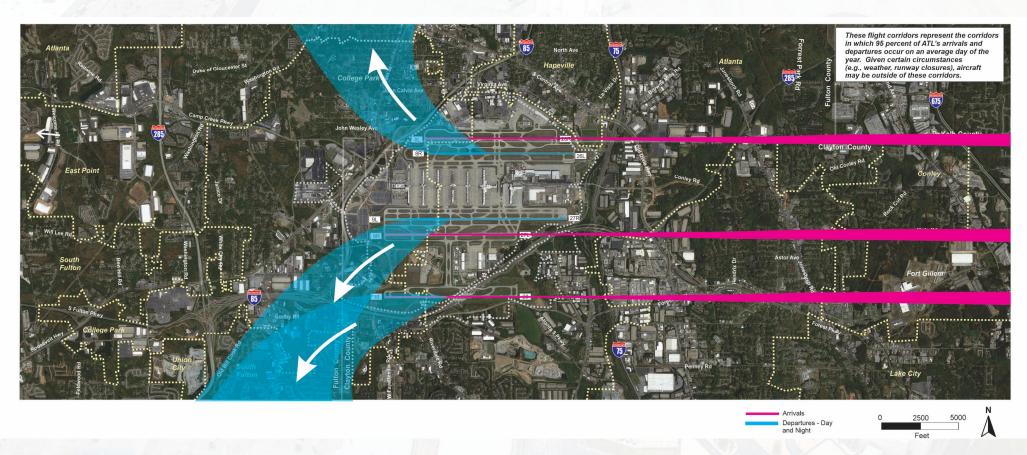
Source: FAA radar data (coverage 45 miles from airport center and up to 20,000 ft in altitude).


Jet Arrival/Departure Corridors – East Flow

Prop/Turboprop Arrival/Departure Corridors – East Flow

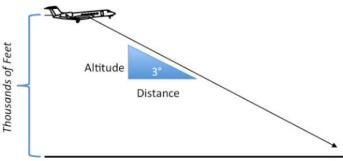


Arrival/Departure Tracks- West Flow



Source: FAA radar data (coverage 45 miles from airport center and up to 20,000 ft in altitude).

Jet Arrival/Departure Corridors – West Flow



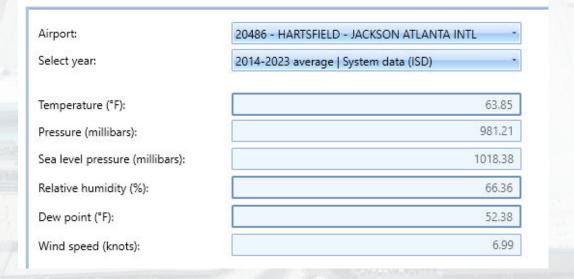
Prop/Turboprop Arrival/Departure Corridors–West Flow

Arrival and Departure Profiles

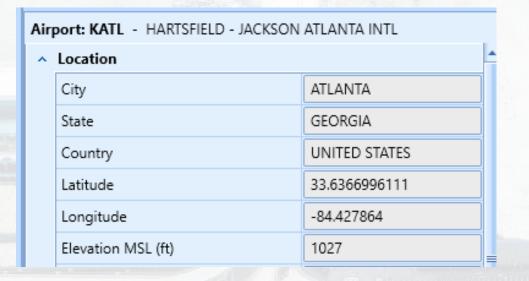
 Arrivals: At established distances from ATL's runways, aircraft descend to the end of a runway using a three-degree glideslope.

 Departures: The profiles of the aircraft departing ATL are being based on data from the DOA's Flight Tracking System (FTS). The FTS provides destination airports for each departure that are then assigned an aircraft stage (i.e., trip) length for input to AEDT. AEDT uses the trip length to approximate the weight of the aircraft on departure which, in combination with AEDT's meteorological data, determines the aircraft departure profiles.

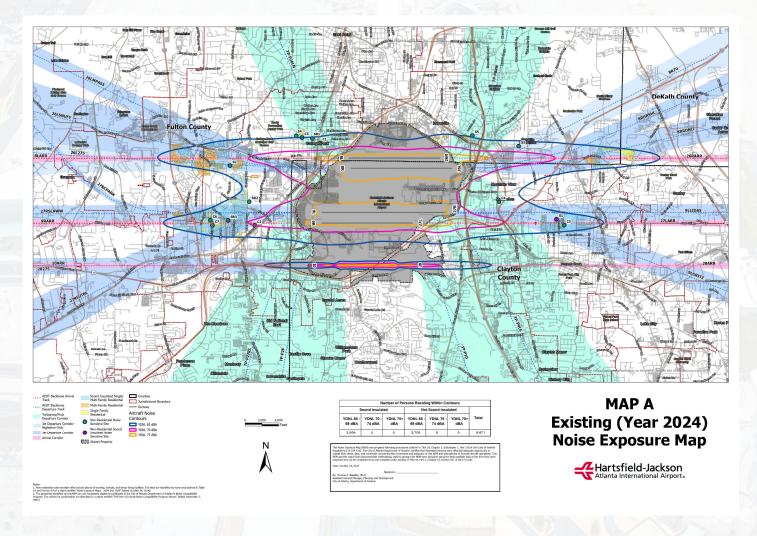
Operation Time	A 1	AC Type	Runway	Origin Airport	Destination Airport
2024-09-08 09:25:02	2	B739	8R	ATL	CLE
2024-09-08 09:25:49		B739	8R	ATL	SMF
2024-09-08 09:26:54		B739	8R	ATL	CVG
2024-09-08 09:32:49		B739	8R	ATL	SJC
2024-09-08 09:34:54		B739	8R	ATL	DTW
2024-09-08 09:56:45		B739	8R	ATL	GEG
2024-09-08 10:03:54		B739	8R	ATL	MEM


Time of Day

	reiceill			
	Daytime	Nighttime		
Arrivals/Departures	(7 AM - 10 PM)	(10 PM - 7 AM)		
Arrivals	88	12		
Departures	86	14		


Parcent

Meteorological Data

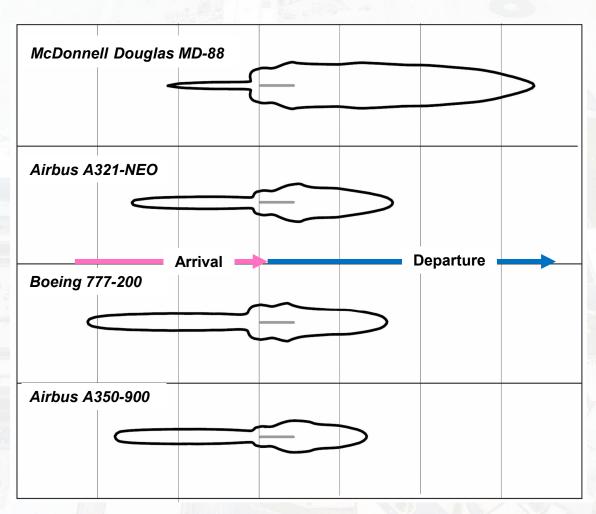

Source: AEDT

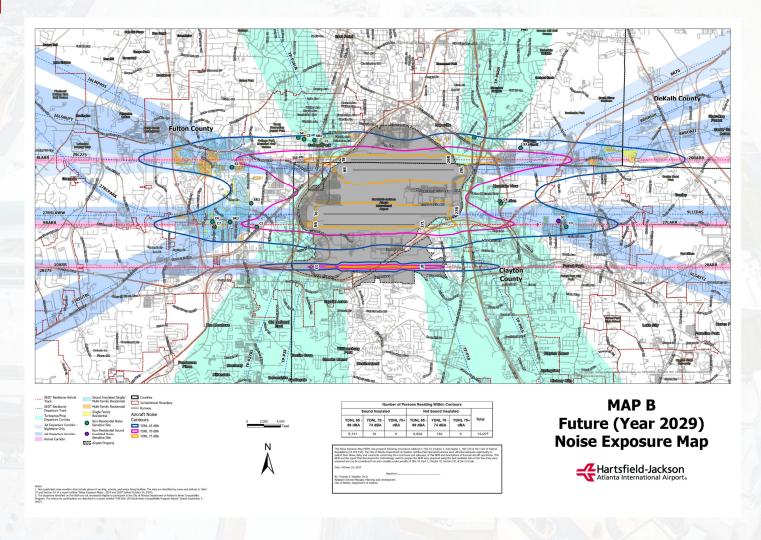
Airfield Location and Elevation

Source: AEDT

2024 NEM

Comparison of 2017 and 2024 NEMs


DNL 65 dB in 2017 DNL 65 dB in 2024


Within YDNL 65+ dBA Contour	2017	2024
Number of residences	8,163	4,649
Population	18,146	9,671
Noise contour area (sq miles)	24	14

Sound Exposure Levels (SELs)

SELs allow comparisons of noise events that occur over different durations by "normalizing" the duration of each event into one second (i.e., a sound level expressed as a steady noise level that has the same amount of energy as the longer duration event).

2029 NEM

Comparison of 2024 and 2029 NEMs

DNL 65 dB in 2024 DNL 65 dB in 2029

Within YDNL 65+ dBA Contour	2024	2029
Number of residences	4,649	5,789
Population	9,671	12,097
Noise contour area (sq miles)	14	16

Schedule

Today

Draft NEMs Presented and Notice of Availability Given for Draft NEM Update Report – Comments Due January 6, 2025

After January 6, 2025

Final Draft NEMs/Report Submitted to Federal Aviation Administration (FAA) for Determination of Compliance with 14 CFR Part 150

JANUARY 2025

SUN	MON	TUE	WED	THU	FRI	SAT
29	30	31	1	2	3	4
5	⁶ X	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	1

Views, Data, Comments

- **Tonight:**

 - Provide your input to the court reporter
 Submit the comment sheet attached to the handout
- After Tonight:
 - By Mail-Postmarked by January 6, 2025 to:

Tianna Evola Director of Government Affairs City of Atlanta/Department of Aviation P. O. Box 20509 Atlanta, GA 30320

By Email-Received by January 6, 2025 to:

NEMComments@cmtengr.com

